Introduction
To start exploring OpenCV with Python, we’ll start by a simple exercise : Detect a cardboard box on a industrial conveyor (from a average picture took with a smartphone) :
As as first step, we’ll identity the contour of the box and define a “perfect” rotated rectangle of the minimum area enclosing our box. The result will be this :
Code details
Load the libraries :
import numpy as np
import cv2
Read the picture (here the picture “box-1.jpg is in the same directory) :
img = cv2.imread('box-1.jpg')
Blur the picture :
blurred = cv2.GaussianBlur(img, (5, 5), 0)
Convert to gray scale :
gray = cv2.cvtColor(blurred,cv2.COLOR_BGR2GRAY)
Calculate the threshold level and we apply it :
threshold = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
retval, bin = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)
Detect contours :
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
If we draw all the contours :
cv2.drawContours(img, contours, -1, (0, 255, 0), 3 )
The result is :
That’s why, to do it quick, we sort out the biggest and convex (close) contour:
max_area = 0
max_index = -1
index = -1
for i in contours:
area = cv2.contourArea(i)
index=index+1
if area > max_area :
max_area = area
max_index = index
And then we draw it :
cv2.drawContours(img, contours, max_index, (0, 255, 0), 3 )
Now we just have the contour that we wanted, but it’s not a rectangle !
Let’s draw a rotated rectangle of the minimum area enclosing our box, in red :
cnt=contours[max_index]
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
img = cv2.drawContours(img,[box],0,(0,0,255),2)
And to finish, just the code to show a picture in a good size windows in Python :
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Code overview
import numpy as np
import cv2
#Read image
img = cv2.imread('box-1.jpg')
#Gaussian blur
blurred = cv2.GaussianBlur(img, (5, 5), 0)
#Convert to graysscale
gray = cv2.cvtColor(blurred,cv2.COLOR_BGR2GRAY)
#Autocalculate the thresholding level
threshold = cv2.adaptiveThreshold(gray,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,11,2)
#Threshold
retval, bin = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)
#Find contours
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
#Sort out the biggest contour (biggest area)
max_area = 0
max_index = -1
index = -1
for i in contours:
area = cv2.contourArea(i)
index=index+1
if area > max_area :
max_area = area
max_index = index
#Draw the raw contours
cv2.drawContours(img, contours, max_index, (0, 255, 0), 3 )
cv2.imwrite("box-1-biggest-contour.png", img)
#Draw a rotated rectangle of the minimum area enclosing our box (red)
cnt=contours[max_index]
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
img = cv2.drawContours(img,[box],0,(0,0,255),2)
#Show original picture with contour
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()